CC Cycle 2 Science Experiments & Projects: In-Class Lesson Plans & Visuals

I hope these make all the hard work you do a little easier! (email: nicoleliemyang@gmail.com)

Notes to the Tutor/Teacher:

I have included the Foundations Guide information needed to do each project. My teaching notes are placed within the instructions to help students learn about the topics while they work on the projects.

What to Do Each Week in Class:

Always stress the **Scientific Method** in each experiment by getting the students to orally state what the purpose, hypothesis, materials etc. are in your experiment.

State the Scientific Method

(ie: sing it to the tune of *Happy Birthday-* "Scientific Method, Purpose, Hypothesis, Materials, Procedure, Results, Conclusion.)

Purpose – stated in the Van Cleeve experiment verbiage

Hypothesis - Typed out as the first of my "More Talking Points".

Materials – Hold them up to the students and ask them to name the materials

Procedure - Go through the steps listed in the experiment together

<u>Results</u> – The "what happened?" of the experiment. Talk about what you saw and if your hypothesis was right or wrong.

<u>Conclusion</u> – The "why did that happen?" of the experiment. Found partially in the Van Cleeve "Why?" segments, and explained more fully in my talking points and images.

Relate it back to Cycle 2: mention how we are studying Ecology, Astronomy and Physics in our experiments and our new grammar pegs. I have done some for you in blue. Find your best way to explain how learning about God's creation is learning more about God's character and what He's done for us.

Week 7

E. Nicole Yang
CC Connected: "nicoleliem"

Project: Building a Proportional Solar System

Purpose: To build a proportional solar system outside. To experience the relative size and distance of each planet.

Materials Needed:

2 Marbles 2 soccer balls marbles/pebbles for an asteroid belt and moons

2 Golf Balls 2 tennis balls 20 ft tape measure Masking and Duct tape wire/string for rings

Procedure:

- In a parking lot or driveway, use the side of a building or a very large tree to represent the scale of the sun.
- Tell the students that though we're going to put the planets in a straight line to show their distance from the Sun, in outer space they are all around the Sun on their orbits.
- Measuring away from the Sun, place the planets with the following distances. Using
 marbles or pebbles, give the planets their following number of moons. Using wire or string,
 give the last four planets rings. (If the balls roll, use a bit of masking or duct tape
 underneath them to hold them in place).

Planet	Inches away	Moons	Rings
Mercury (marble)	5.8"	0	no
Venus (golf ball)	10.8"	0	no
Earth (golf ball)	14.9"	1	no
Mars (marble)	22.8"	2	no
Jupiter (soccer ball)	77.8"	16	yes
Saturn (soccer ball)	142.7"	17	yes
Uranus (tennis ball)	287"	15	yes
Neptune (tennis ball)	450"	8	yes

- Place an asteroid belt between Mars and Jupiter with marbles or pebbles.
- Let the students look at the following page's chart.
 - Explain that it shows how long each planet's rotation is (=1 day and night),
 - And how long a year is on each planet (= 1 orbit around the sun, which we learned
 is slower the farther away from the sun's gravity a planet gets)
- Fun Questions to ask:
 - -Would your bedtime be earlier or later on Uranus?

(earlier, because the days are shorter)

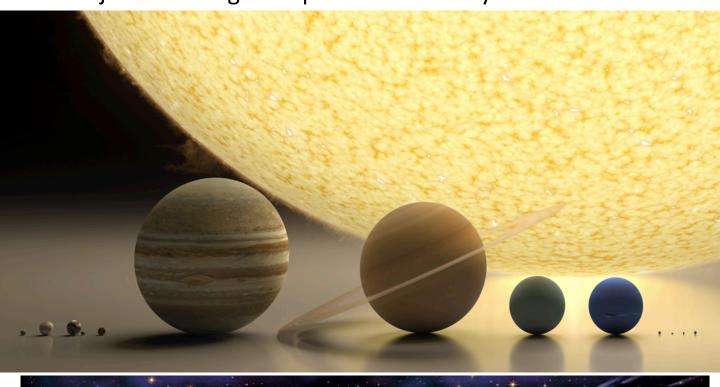
-If you are 36 earth years, how many years old would you be on Jupiter? (36/12 = 3 Jupiter years old)

-Which planet is not named after a Roman god? (Earth)

-The distance from LA to NY is 3944km. Which planet has a diameter only 1000km larger?

(Mercury)

CC Science Cycle 2 E. Nicole Yang CC Connected: "nicoleliem"	Distance from Sun	57.9 mill km	108.2 mill km	149.6 mill km	227.8 mill km	778 mill km	1,427 mill km	2,870 mill km	4,500 mill km
	Diameter	4,900 km	12,100 km	12,756 km	6,800 km	142,800 km	120,660 km	52,400 km	49,500 km
Week 7 Project: Building a Proportional Solar System	1 Orbit/Year	88 days	224.7 days	365.3 days	687 days	12 earth yrs	29.5 earth yrs	84 earth yrs	165 earth yrs
	1 Rotation/Day	59 days	243 days	24 hours	24.5 hours	9.8 hours	10.7 hours	17 hours	16 hours
Week 7 Project: Bu	<u>Planet</u>	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune


Г

CC Science Cycle 2

E. Nicole Yang
CC Connected: "nicoleliem"

Pictures for Weeks 7 & 8

Project: Building a Proportional Solar System

